Galois Embeddings for Linear Groups

نویسنده

  • SHREERAM S. ABHYANKAR
چکیده

A criterion is given for the solvability of a central Galois embedding problem to go from a projective linear group covering to a vectorial linear

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary Abelian Hopf Galois Structures and Polynomial Formal Groups

We find a relationship between regular embeddings of G, an elementary abelian p-group of order p, into unipotent upper triangular matrices with entries in Fp and commutative dimension n degree 2 polynomial formal groups with nilpotent upper triangular structure matrices. We classify the latter when n = 3 up to linear isomorphism, and use that classification to determine the number of Hopf Galoi...

متن کامل

Bipartite graph embeddings, Riemann surfaces and Galois groups

Bipartite graphs can model matching problems, hypergraphs and relations between sets. Studying their surface embeddings is an old tradition, illustrated by the utilities problem. I shall show how such embeddings can be described by pairs of permutations, and how this leads to a classification of the regular (most symmetric) embeddings of complete bipartite graphs. This is joint work with Du, Kw...

متن کامل

Fixed-point Free Endomorphisms and Hopf Galois Structures

Let L|K be a Galois extension of fields with finite Galois group G. Greither and Pareigis [GP87] showed that there is a bijection between Hopf Galois structures on L|K and regular subgroups of Perm(G) normalized by G, and Byott [By96] translated the problem into that of finding equivalence classes of embeddings of G in the holomorph of groups N of the same cardinality as G. In [CCo06] we showed...

متن کامل

Linear algebraic groups as parameterized Picard–Vessiot Galois groups

We show that a linear algebraic group is the Galois group of a parameterized Picard-Vessiot extension of k(x), x′ = 1, for certain differential fields k, if and only if its identity component has no one dimensional quotient as a linear algebraic group.

متن کامل

A New Bound on Hrushovski's Algorithm for Computing the Galois Group of a Linear Differential Equation

The complexity of computing the Galois group of a linear differential equation is of general interest. In a recent work, Feng gave the first degree bound on Hrushovski’s algorithm for computing the Galois group of a linear differential equation. This bound is the degree bound of the polynomials used in the first step of the algorithm for finding a proto-Galois group (see Definition 2.8) and is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000